收缩

QQ在线客服

QQ在线客服

  • 400-891-3318
  • 0755-84275866
  • 0755-84275899
  • 中为报告
  • 中为资讯
  • 中为数据
  • 企业名录
 深圳·北京·上海
中国最为专业的产业市场调查研究咨询机构
中为实力鉴证  咨询流程  公司资质
您当前位置:首页 > 行业分析 > IT通讯 >  正文

算法有扩展性,但实现尚不具备通用性(法)

来源:中为咨询www.zwzyzx.com 【日期:2016-09-14 17:24:49】【打印】【关闭】
以深度学习方法为例,在自然语言理解、图像识别以及辅助智能决策等方面均有应用,只不过会根据不同的应用场景进行相应的调整,由此来看算法的扩展性是毫无疑问的。
 
一方面,人工智能应用越来越强大,但单个应用的适用领域依然专一而狭窄。1997年IBM的“深蓝”本就是针对国际象棋而开发,并且在赢得比赛之后即“解甲归田”;2016年的AlphaGo虽然是用了相对而言更为通用的架构构建,但在代码中依然存在很多人工编码的知识,所以也只是用来下围棋,若不调整模型并重新训练,它甚至都玩不来更简单的国际象棋。20年时间过去,能灵活应用于多个领域的通用人工智能还是很遥远。
 
另一方面,即便是对于单一领域的人工智能应用而言,也并不能适用于所有环境。例如语音识别,所谓95%以上的识别准确率也只是实验室水平,测试的语音必须来自安静的环境,普通话还得标准,而在2014年12月百度公布的噪音环境下的识别准确率也就刚刚超过81%,而且我们可以想
象,这所谓的噪音环境,也显然不会是一屋子人天南地北瞎侃的酒馆茶楼。再如人脸识别,不同的
角度、分辨率、光线环境下,算法结构上会有显著差异。为了保证准确度,算法必须根据其特定使用环境定制化开发。例如,银行柜面和火车站闸机口的人脸识别算法之间,会有较大的差异。
本文地址:http://www.zwzyzx.com/show-336-232204-1.html
分享到:
相关资讯

合作媒体

定制出版

报告搜索

免责声明

  中为咨询所引述的资料是用于行业市场研究以及讨论和交流,并注明出处,部分内容是由相关机构提供。若有异议请及时联系本公司,我们将立即依据相关法律对文章进行删除或作相应处理。查看详细》》
关闭 中为咨询微博号
微信咨询